My research interests are centred on improving our understanding of sea-bed hugging flows called turbidity currents, as they are volumetrically the most important sediment transport process on our planet. The rapid speeds (up to 20m/s) that these flows are capable of achieving is a key component of their destructive nature and accounts for the lack of direct and detailed monitoring of these events, hence they currently remain poorly understood.

Currently, my research focuses on the analysis of the first direct observations of turbidity currents in the deep ocean. Data is acquired via a series of instrumented moorings deployed along Monterey Canyon, a large submarine canyon, located offshore of California, USA. Through the development of numerical models, it will be possible to capture general insights into how these flows behave. In addition to validating these models against this unique field data, cutting-edge robotics including the next generation of sensor networks, will play a crucial role in demonstrating how advances in acoustic data transfer, self-propelling wave gliders, and autonomous underwater vehicles (AUVs) can contribute towards step changes in our understanding of turbidity currents.